210u wk10 disc | Social Science homework help

Get your original paper written from scratch starting at just $10 per page with a plagiarism report and free revisions included!

4.8

rating

SiteJabber

4.9

rating

ResellerRatings

4.9

rating

Reviews.io

Hire A Writer

To prepare for this Discussion:

· Review Warner’s Chapter 12 and Chapter 2 of the Wagner course text and the media program found in this week’s Learning Resources and consider the use of dummy variables.

· Create a research question using the General Social Survey dataset that can be answered by multiple regression. Using the SPSS software, choose a categorical variable to dummy code as one of your predictor variables.

BY DAY 3

Estimate a multiple regression model that answers your research question. Post your response to the following:

1. What is your research question?

2. Interpret the coefficients for the model, specifically commenting on the dummy variable.

3. Run diagnostics for the regression model. Does the model meet all of the assumptions? Be sure and comment on what assumptions were not met and the possible implications. Is there any possible remedy for one the assumption violations?

Be sure to support your Main Post and Response Post with reference to the week’s Learning Resources and other scholarly evidence in APA Style.

RESOURCES


Required Readings

· Wagner, III, W. E. (2020). 
Using IBM® SPSS® statistics for research methods and social science statistics (7th ed.). Thousand Oaks, CA: Sage Publications.

· Chapter 2, “Transforming Variables” 

· Chapter 11, “Editing Output” (previously read in Week 2, 3, 4, 5. 6, 7, 8, and 9)

 

· Allison, P. D. (1999). 
Multiple regression: A primer. Thousand Oaks, CA: Pine Forge Press/Sage Publications.
Multiple Regression: A Primer, by Allison, P. D. Copyright 1998 by Sage College. Reprinted by permission of Sage College via the Copyright Clearance Center.

·

Chapter 6, “What are the Assumptions of Multiple Regression?” (pp. 119–136)

Download Chapter 6, “What are the Assumptions of Multiple Regression?” (pp. 119–136)

 

· Allison, P. D. (1999). 
Multiple regression: A primer. Thousand Oaks, CA: Pine Forge Press/Sage Publications.
Multiple Regression: A Primer, by Allison, P. D. Copyright 1998 by Sage College. Reprinted by permission of Sage College via the Copyright Clearance Center.

·

Chapter 7, “What can be done about Multicollinearity?” (pp. 137–152)

Download Chapter 7, “What can be done about Multicollinearity?” (pp. 137–152)

 

· Warner, R. M. (2012). 
Applied statistics from bivariate through multivariate techniques (2nd ed.). Thousand Oaks, CA: Sage Publications.
Applied Statistics From Bivariate Through Multivariate Techniques, 2nd Edition by Warner, R.M. Copyright 2012 by Sage College. Reprinted by permission of Sage College via the Copyright Clearance Center.

·

Chapter 12, “Dummy Predictor Variables in Multiple Regression”

Download Chapter 12, “Dummy Predictor Variables in Multiple Regression”

 

· Fox, J. (Ed.). (1991). 
Regression diagnostics. Thousand Oaks, CA: SAGE Publications.

· Chapter 3, “Outlying and Influential Data” (pp. 22–41)

· Chapter 4, “Non-Normally Distributed Errors” (pp. 41–49)

· Chapter 5, “Nonconstant Error Variance” (pp. 49–54)

· Chapter 6, “Nonlinearity” (pp. 54–62)

· Chapter 7, “Discrete Data” (pp. 62–67)

Note: You will access these chapters through the Walden Library databases. The chapters are individually linked below.

 

·

Outlying and Influential Data
. (1991). In J. Fox (Ed.), 
Regression Diagnostics. (pp. 22-41). Thousand Oaks, CA: SAGE Publications, Inc.

 

·

Non-Normally Distributed Errors
. (1991). In J. Fox (Ed.), 
Regression Diagnostics. (pp. 41-49). Thousand Oaks, CA: SAGE Publications, Inc.

 

·

Nonconstant Error Variance
. (1991). In J. Fox (Ed.), 
Regression Diagnostics. (pp. 49-54). Thousand Oaks, CA: SAGE Publications, Inc.

 


 (Links to an external site.

·

)


Discrete Data
. (1991). In J. Fox (Ed.), 
Regression Diagnostics. (pp. 62-67). Thousand Oaks, CA: SAGE Publications, Inc

 (Links to an external site.)

 

·

Nonlinearity
. (1991). In J. Fox (Ed.), 
Regression Diagnostics. (pp. 54-62). Thousand Oaks, CA: SAGE Publications, Inc.


 (Links to an external site.)


 (Links to an external site.)

 

·

Outlying and Influential Data
. (1991). In J. Fox (Ed.), 
Regression Diagnostics. (pp. 22-41). Thousand Oaks, CA: SAGE Publications, Inc.


Optional Resources

·
Skill Builder:

·


Interpreting Regression Coefficients for Dummy-Coded Variables


You are encouraged to click through these and all Skill Builders to gain additional practice with these concepts. Doing so will bolster your knowledge of the concepts you’re learning this week and throughout the course.

Stay Anonymous
With Our Essay Writing Service

The aim of our service is to provide you with top-class essay help when you ask us to write my paper; we do not collect or share any of your personal data. We use the email you provide us to send you drafts, final papers, and the occasional promotion and discount code, but that’s it!

Order Now